An Experimental Investigation about the Integration of Facial Dynamics in Video-Based Face Recognition
نویسندگان
چکیده
Recent psychological and neural studies indicate that when people talk their changing facial expressions and head movements provide a dynamic cue for recognition. Therefore, both fixed facial features and dynamic personal characteristics are used in the human visual system (HVS) to recognize faces. However, most automatic recognition systems use only the static information as it is unclear how the dynamic cue can be integrated and exploited. The few works attempting to combine facial structure and its dynamics do not consider the relative importance of these two cues. They rather combine the two cues in an ad hoc manner. But what is the relative importance of these two cues separately? Does combining them enhance systematically the recognition performance? To date, no work has extensively studied these issues. In this article, we investigate these issues by analyzing the effects of incorporating the dynamic information in video-based automatic face recognition. We consider two factors (face sequence length and image quality) and study their effects on the performance of video-based systems that attempt to use a spatio-temporal representation instead of one based on a still image. We experiment with two different databases and consider HMM (the temporal hidden Markov model) and ARMA (the auto-regressive and moving average model) as baseline methods for the spatio-temporal representation and PCA and LDA for the image-based one. The extensive experimental results show that motion information enhances also automatic recognition but not in a systematic way as in the HVS.
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملThe Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کامل